Two Properties in the Elementary Set Theory

My first post is about two properties in the elementary set theory. You can see an amazing proof for them from me in the following.

(A\cup C)\cap(B\cup C^c)\subseteq A\cup B

A\cap B\subseteq(A\cap C)\cup(B\cap C^c)

In proof I used the following property in logic

(P\Rightarrow Q)\land(R\Rightarrow S) \vdash (P\land R)\Rightarrow( Q\land S)

that is called “constructive dilemma”.

First Property:

Let x\in(A\cup C)\cap(B\cup C^c), then I can write

(x\in A\lor x\in C)\land( x\in B\lor x\in C^c)

(x\in A^c\Rightarrow x\in C)\land(x\in B^c\Rightarrow x\in C^c)

(x\in A^c\land x\in B^c)\Rightarrow( x\in C\land x\in C^c)

\lnot(x\in A^c\land x\in B^c)\lor(x\in C\land x\in C^c)

(x\in A\lor x\in B)\lor(x\in C\land x\in C^c)

which implies that x\in A\cup B.

Second Property:

Let x\in A\cap B, then

(x\in A\land x\in B)\land\lnot(x\in C^c\land x\in C)

\lnot \left((x\in A\land x\in B)\Rightarrow( x\in C^c\land x\in C)\right)

\lnot \left((x\in A\Rightarrow x\in C^c)\land(x\in B\Rightarrow x\in C)\right)

\lnot\left((x\in A^c\lor x\in C^c)\land(x\in B^c\lor x\in C)\right)

(x\in A\land x\in C)\lor(x\in B\land x\in C^c)

which implies that x\in (A\cap C)\cup(B\cap C^c).

Two Properties in the Elementary Set Theory

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s